# Spinning Science: Centripetal Force Using Marbles in Jell-O

A fun physics activity from Science Buddies

Give it a spin: Marvel at marble movements in this activity on centripetal force. Image: George Retseck

• ### Neutrino Hunters

Key concepts
Physics
Forces
Motion
Centrifugal force
Circular motion
Acceleration

Introduction
Have you ever wondered what keeps you in your seat when you're riding a giant loop-de-loop roller coaster? Surprisingly, it's not only the seat belt! You're kept in your seat because of something called centripetal force. Centripetal force actually does much more than make a ride on a roller coaster's loop possible—it keeps satellites in orbit and you in your bicycle when taking a turn!

In this activity, you will use marbles and Jell-O to investigate centripetal force and circular motion. Which way will the marbles go?

Background
Isaac Newton, a careful observer of nature, used mathematics and science to describe natural phenomena that were not understood at the time. Newton's laws of motion are still used today, and these principles can be found in almost any moving technology. Newton discovered that for an object to move, it must be acted on by a force that makes it move in a certain direction. The object set in motion will continue this motion until it meets an opposite force. You have felt this phenomenon when riding in a car. When the car starts moving you rock backward because your body wants to stay in its stationary position. After you're moving, if the car suddenly stops you will rock forward because your body wants to keep moving at the same speed and direction.

Newton realized that when an object moves (or accelerates) in a circle, the object will move outward, away from the circle's center. For example, when you're riding in a car and it makes a turn, your body moves to the outside of the turn, away from the turn's direction. The force that makes you follow a circular path, even though your body wants to move away from the turn, is called centripetal force.

Materials
•    Transparent plastic cups, at least four
•    Scissors or one-hole puncher
•    Duct tape or electrical tape
•    String
•    Cooking pot
•    Measuring cup
•    Stove
•    Jell-O, two packages, each of a different color
•    Refrigerator
•    Marbles, at least three
•    An open area outside
•    Flashlight

Preparation
•    Use the scissors or one-hole puncher to make a small hole about 2.5 centimeters (one inch) from the top rim of one of the plastic cups. Make a second hole on the opposite side of the cup.
•    Put a small piece of duct tape or electrical tape on the edge of the cup, just above each hole. Fold over the tape so it is on the outside and inside of the cup, but not blocking the holes. This will help prevent the string from detaching.
•    Attach the string to the cup, tying one end of the string through one of the holes at the cup's top and the other end to the other hole.
•    This cup will be your centripetal force generator. Test to make sure that the string is strongly attached to the cup by holding on to the string and pulling down on the cup.
•    Ask an adult to help you make the Jell-O. Be careful when working with the boiling water. Also, be careful not to let the Jell-O spill and stain anything.

Procedure
•    Make one of the packets of Jell-O by dissolving it in the appropriate amount of water according to the directions on the package.
•    Pour the Jell-O into the three other plastic cups, filling each cup halfway full.
•    Place these cups in the refrigerator and chill until the Jell-O is completely set, about two to three hours.
•    When the Jell-O is set, in each cup place a marble on the surface of the Jell-O in the center of the cup. Gently press it into the Jell-O just until the marble is secure and will not move around. Why do you think it is important that the Jell-O is firm enough to support the weight of the marble?
•    Make the second batch of Jell-O. Why do you think the second batch should be a different color from the first?
•    Slowly and carefully pour the hot Jell-O into the cups, covering the first layer of Jell-O and the marble until the cup is almost full, leaving about 2.5 centimeters at the top of the cup.
•    Place the cups back in the refrigerator until the mixture is completely set, about two to three hours.
•    When the Jell-O cups are set, put one of them into the centripetal force generator cup (the cup with a string tied to it) by stacking the cup with Jell-O inside the centripetal force generator cup.
•    Take the stacked cups outside to an open area. (If the string on the centripetal force generator cup broke by accident, you would not want to get Jell-O all over the floors, walls and furniture!)
•    Hold the string and twirl the stacked cups around your head for 20 revolutions, counting each time the cups make a complete circle. If you were to let go of the cups while spinning them, in what direction do you think they would go?
•    After 20 revolutions, stop spinning and remove the inner cup from the outer cup.
•    Shine a flashlight through the cup with the marble. Can you see the marble? Where is it? How has it moved?
•    Tip: If you have trouble locating the marble, try backlighting the marble by shining the flashlight through the back of the cup, toward you.
•    Tip: If the marble did not move, the Jell-O may be too firm. First try spinning it around for 20 revolutions again—but this time spin it harder. If the marble has still not moved, either let the cups sit out at room temperature overnight to soften the Jell-O or repeat this activity, this time using more water to make the Jell-O.
•    One at a time, spin the other Jell-O cups in the centripetal force generator cup for 20 revolutions. Do you notice any patterns of movement? Did the marbles always move in the same direction? Did they move in the direction you thought they would? How far did they move?
•    Extra: One of Newton's other laws says that there is a relationship between the motion of an object and its mass. Try a similar activity with small objects of different weights to see if this has an effect on the amount of movement an object makes due to centripetal force. Instead of marbles, try lead fishing weights, beans, quarters, beads, etcetera. Do you notice a difference in motion between objects of different weights or sizes?
•    Extra: How fast did you swing your centripetal force generator? Is there a relationship between speed and circular motion? Try using a metronome to guide your speed of rotation, setting the metronome at fast and slow speeds. Do the cups move differently at faster speeds than they do at slower speeds?
·      Extra: There are many ways to investigate Newtonian motion. Try taking some of your cups containing Jell-O and marbles with you for some on-site experimentation. What happens to the marble when you take it on a swing, slide, merry-go-round, roller coaster, car ride, bike ride or anywhere else you are curious to find out about?

View
1. 1. kieryn 04:01 PM 7/12/12

Um. As anything involving jello, much fun. Maybe a little overkill though?

For a more boring, but less time-consuming experiment you can tie a small object to a length of elastic cord and observe that as you spin the object around faster the longer the elastic is stretched due to the extra force.

Hmmm. Maybe this is why I am not a 3rd grade science teacher.

2. 2. dadster 05:33 PM 7/12/12

Good illustration .But a video of the experiment would have made the effort ten times more interesting and attention-arresting .videos can communicate better than mere words only.

3. 3. jack.123 06:16 PM 7/13/12

The object here is to do the actual experiment yourself.Not just view someone else doing it.

4. 4. DrCohen in reply to kieryn 03:36 PM 9/27/13

Not the same experiment. When marble and Jello are both accelerated, they are both "heavier" in the same frame of reference. If the Jello can be thought of as liquid, it is not obvious that an object floats lower when gravity is uniformly increased.

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Click one of the buttons below to register using an existing Social Account.

## More from Scientific American

• Scientific American Magazine | 2 hours ago

### What to Do about the Flu?

• Scientific American Magazine | 4 hours ago

### Orphaned Chimpanzees Play Rougher Than Their Mother-Reared Counterparts

• Scientific American Magazine | Dec 7, 2013

### Teenage Flu Scientist Shares His Recipe for Prizewinning Research

• Scientific American Magazine | Dec 7, 2013

• Cocktail Party Physics | Dec 7, 2013

More »

## Latest from SA Blog Network

• ### Sunday Species Snapshot: Fijian Monkey-Faced Bat

Extinction Countdown | 1 hour ago
• ### Right now, there's a giant blue chicken in Trafalgar Square

Tetrapod Zoology | 2 hours ago
• ### The bacteria in breast milk

Lab Rat | 2 hours ago
• ### Stream of Thought Description of Teaching James's "Stream of Thought": A Work of Faction

Cross-Check | Dec 7, 2013
• ### Physics Week in Review: December 7, 2013

Cocktail Party Physics | Dec 7, 2013

## Science Jobs of the Week

Spinning Science: Centripetal Force Using Marbles in Jell-O

X

Give a 1 year subscription as low as \$14.99

X

X

###### Welcome, . Do you have an existing ScientificAmerican.com account?

No, I would like to create a new account with my profile information.

X

Are you sure?

X