# Swinging with a Pendulum

A fun physics challenge from Science Buddies

Image: George Retseck

• ### Gravity's Engines

We’ve long understood black holes to be the points at which the universe as we know it comes to an end. Often billions of times more massive than the Sun, they...

Key concepts
Physics
Gravity
Motion
Pendulums

Introduction
Did you know that playground swings can provide a good lesson in physics—as well as lots of fun? The back-and-forth motion of a swing is an example of a pendulum.

We see pendulums in other areas of our lives as well, such as in grandfather (also known as longcase) clocks. But pendulums can do more than provide fun at recess and help tell the time—among other scientific applications, they can show that the earth is huge! This is because the swinging motion of a pendulum is due to the force of gravity generated by the earth's size. Other factors, including a pendulum's length, can also affect its motion.

Background
A pendulum is an object hung from a fixed point that swings back and forth under the action of gravity. In the example of the playground swing, the swing is supported by chains that are attached to fixed points at the top of the swing set. When the swing is raised and released, it will move freely back and forth due to the force of gravity on it. The swing continues moving back and forth without any extra outside help until friction (between the air and the swing and between the chains and the attachment points) slows it down and eventually stops it.

The time it takes a pendulum to swing back to its original position is called the period of the pendulum. For example, this is the time it takes a child being pushed in a swing to be pushed and then return back for another push. The period of the pendulum depends on the force of gravity, as well as the length of the pendulum.

Materials
•    Two identical chairs
•    String or yarn
•    Ten metal washers of identical size or six pennies
•    Strong tape
•    Meter stick
•    Scissors
•    Stopwatch accurate to 0.1 second
•    An assistant

Preparation
•    Place the two chairs back-to-back. Space them about one meter apart. Lay the meter stick on the backs of the two chairs, centered on the back of each.
•    Cut one piece of string to a length of 70 centimeters. Cut a second piece of string to a length of 35 cm. Tie one end of both strings to the meter stick, toward the middle of the stick. Space the strings about 20 to 30 cm apart on the meter stick.
•    Tie five metal washers to the free end of each string. Alternatively, if you are using pennies and tape, securely tape three pennies to the free end of each string.
•    Tip: If the meter stick does not seem to stably sit on the backs of the chairs, you can try to tape the ends of the meter stick to the chairs.

Procedure
•    Pull the strings tight (by holding on to the washers or pennies at the ends) and position the strings at the same angle from the meter stick.
•    Have an assistant ready with a stopwatch. Drop the longer pendulum and, at the same time, have the assistant start the stopwatch. Then have the assistant stop the stopwatch when the pendulum returns back to its original position. If the pendulum hit anything as it swung, such as the wall, readjust your setup and try timing the pendulum again. How long does it take the longer pendulum to swing back to its original position? This is the period of the pendulum.
•    Again, pull the strings tight and hold them at the same angle from the meter stick.
•    Have the assistant reset the stopwatch. Drop the shorter pendulum and, once more, have the assistant time the period of the pendulum. How long does it take the shorter pendulum to swing back to its original position?
•    Time the periods of the shorter and longer pendulums a few more times. Are the periods consistent for each pendulum or do they vary a lot?
•    Is the period of the longer pendulum longer or shorter than the period of the shorter pendulum? How different are the two periods? Is this what you expected?
•    Extra: Instead of timing the period of the swing, you could time how long each pendulum swings before it comes to rest. What is the total time that each pendulum swings?
•    Extra: Instead of changing the length of the string, change the number of weights attached to the string or the initial angle of the string. Do mass or initial angle affect the period of the pendulum? Do they affect the pendulum's total time?

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Click one of the buttons below to register using an existing Social Account.

## More from Scientific American

• Guest Blog | 1 hour ago

### The Art and Science of the Diagram: Communicating the Knowledge of the Heavens, the Earth and the Arcane, Final Part

• Brainwaves | 1 hour ago

### A Brief History of Mental Illness In Art

• Scientific American Mind | 1 hour ago

### Brain's Glial Cells Spark Seizures

• Reuters | 2 hours ago

### China Plans Tougher Quality Standards for Coal to Tackle Pollution

• Scientific American Magazine | 2 hours ago

More »

## Latest from SA Blog Network

• ### The Art and Science of the Diagram: Communicating the Knowledge of the Heavens, the Earth and the Arcane, Final Part

Guest Blog | 1 hour ago
• ### A Brief History of Mental Illness In Art

MIND
Brainwaves | 1 hour ago
• ### Deciphering the Strange Mathematics of Cicadas [Video]

Observations | 2 hours ago
• ### The Cataclysm: "From Unbaked Fragments to Vitreous Charcoal"

Rosetta Stones | 6 hours ago
• ### Illusion of the week: It Kind Of Looks Like a Building

MIND
Illusion Chasers | 10 hours ago

Swinging with a Pendulum

X

### Subscribe Today

Save 66% off the cover price and get a free gift!

X

X

###### Welcome, . Do you have an existing ScientificAmerican.com account?

No, I would like to create a new account with my profile information.

X

Are you sure?

X