# Under Pressure: Launch a Balloon Rocket

Bring Science Home: Activity 4

Harness the power of air Image: Kagen McLeod

• ### Gravity's Engines

We’ve long understood black holes to be the points at which the universe as we know it comes to an end. Often billions of times more massive than the Sun, they...

Key concepts
Energy
Propulsion and thrust
Pressure

From National Science Education Standards: Motion and forces

Introduction
Have you ever wondered how a space shuttle launches all the way into outer space? It takes a lot of energy to make such a heavy object (4.5 million pounds at liftoff) go from standing still to blasting off toward space at more than 17,000 miles per hour—in just minutes!

For real space launches rocket scientists figured out special fuel to make enough energy to get a heavy shuttle off the ground. You, too, can use the same principle (but without dangerous rocket fuel) to propel a balloon rocket across the room.

Background
Complex chemical formulas aside, rocket fuel is based on a simple idea: create enough power to push an object forward. This movement works in part because the power created by burning fuel is focused in a single direction. By controlling the direction that force goes, you can create thrust. During a space shuttle launch, the power is focused down, forcing the shuttle to move in the opposite direction.

In this activity we are working with air instead of rocket fuel, but we use the same idea of force in one direction moving an object in the opposite direction. When you blow up a balloon, you force extra air into it, creating higher air pressure inside the balloon than outside of it. Given the chance, the air molecules will move to a lower-pressure environment—which is why, if you let go of a balloon's opening without tying it off, air you added will rush out again.

If you were to pop a full balloon, the air from inside goes in all directions, distributing the force so that none of it is that strong in any one direction. But if you allow the air to exit through only one small hole, the force will be strong enough to propel the lightweight balloon in the opposite direction.

Materials
•    Balloon (Long ones work best, but a round one will do, too.)
•    Piece of string at least 10 feet long
•    Plastic straw
•    Tape
•    Two chairs or sturdy door handles about 10 feet apart (with clear space in between)
•    Balloons of other shapes and sizes (optional)
•    Other thin materials that can work as a guide wire, such as fishing line, ribbon or twine (optional)
•    Stopwatch or clock that indicates seconds (optional)

Preparation
•    Tie one end of the string to a chair, handle or other steady object.
•    Thread the string through the plastic straw.
•    Making sure the string is taut, tie it to another chair or handle at least 10 feet away, keeping it at the same height so there is no upward or downward slope, and making sure the area around the string is clear.

Procedure
•    Blow up your balloon (this is the part that’s like filling a rocket engine with fuel) and pinch the opening with your fingers to keep the air inside. (Don't tie it off.)
•    While you are pinching the end of the balloon, secure it onto the bottom of the plastic straw with a few pieces of tape.
•    Pull the full balloon with the straw to one end of the string, so that its opening faces in the opposite direction from the clear line of string ahead of the balloon.
•    What do you think is going to happen when you let go of the balloon opening?
•    Let go of the balloon, then release its opening.
•    What happened when you let go of the end of the balloon?
•    Which direction—and how far—did it go?
•    Try it again with the balloon only half inflated. How fast and how far do you think it will go?
•    What are other ways you could get a balloon to go faster or slower—or longer or shorter distances?
•    Extra: Try other sizes and shapes of balloons. How do they perform?
•    Extra: Try using other types of thin materials as your line, such as ribbon, twine or fishing line. Do these make a difference in balloon rocket speed or distance?

Read on for observations, results and more resources.

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Click one of the buttons below to register using an existing Social Account.

## More from Scientific American

• Information Culture | 14 hours ago

• TechMediaNetwork | 15 hours ago | 5

### Why the Internet Sucks You in Like a Black Hole

• TechMediaNetwork | 15 hours ago

### Minor Lunar Eclipse Tonight: How to Watch It Online

• Overthinking It | 16 hours ago

### Scour: Why Most Bridges Fail

• Scientific American Magazine | 16 hours ago

More »

## Latest from SA Blog Network

• ### #SciAmBlogs Friday - Kirk vs. Spock, bridge failure, elephant seals, chemical intuition, predatory journals, sleep learning, and more.

STAFF
The Network Central | 6 hours ago
• ### Barack Obama Should Call for End of All War, Not Just War on Terror

Cross-Check | 10 hours ago
• ### Dear Guardian: You've Been Played

Cocktail Party Physics | 13 hours ago

Information Culture | 14 hours ago
• ### Anti-Psychiatry Prejudice? A response to Dr. Lieberman

Molecules to Medicine | 14 hours ago

Under Pressure: Launch a Balloon Rocket

X

### Subscribe Today

Save 66% off the cover price and get a free gift!

X

X

###### Welcome, . Do you have an existing ScientificAmerican.com account?

No, I would like to create a new account with my profile information.

X

Are you sure?

X