ADVERTISEMENT

The Year in Robots

In 2007, our artificially intelligent companions moved closer to replacing us on the battlefield, improving healthcare (on Earth and in space) and even befriending our children



Courtesy of Toyota Motor Corp.

Last week's announcement of Japan's "Robot of the Year" for 2007—a mechanical arm capable of grabbing 120 items-per-minute from a conveyor belt—marked an anticlimactic end to what has otherwise been a good year in the advancement of artificial intelligence.

The three Fanuc Ltd. assembly-line mechanical arms—which beat out competitors such as Fujitsu's 24-inch-tall (61-centimeter) dancing humanoid HOAP and Komatsu Ltd.'s tank-shaped, fire-extinguishing robot—won for their practicality; they are optimized to work efficiently and accurately on food and pharmaceutical manufacturing lines.

Still, 2007 offered plenty of other significant, if less heralded (and immediately useful), developments and pushed robotic technology to new levels, or at least promised to in the near future.

As part of NASA's plans to send peopled missions back to the moon (and then on to Mars), the space agency, in September, performed a series of tests to determine if robotic technology could be used to provide medical care for astronauts during extended spaceflights. On board a military C-9 aircraft flying in parabolic arcs over the Gulf of Mexico, four surgeons and four astronauts performed simulated surgery both by hand and using a robotic device developed by SRI International to determine if the robot's software can compensate for errors in movement caused by turbulence and varying gravitational conditions.

The U.S. Department of Defense continued its quest to develop autonomous robotic technology that will eventually take the place of human soldiers in battle. In November, the Defense Advanced Research Projects Agency (DARPA) hosted its 2007 DARPA Urban Challenge, a competition that tested the driving prowess of experimental driverless autos. "Boss," an SUV put together by a team including gearheads from Carnegie Mellon University, General Motors Corporation, Caterpillar and Continental AG drove away with the $2 million grand prize. (The second- and third-place finishers were, respectively, built by groups at Stanford University and Virginia Polytechnic Institute and State University.) Boss maintained an average speed of 14 miles per hour throughout the 55-mile course at the former George Air Force Base in Victorville, Calif., which was built to resemble an urban layout. The autonomous vehicles demonstrated their abilities by changing lanes, merging onto roadways amidst fast-moving traffic and traversing busy intersections—using only sensors, global positioning systems and computers.

During the tragedy at Utah's Crandall Canyon mine in August, when six miners and three rescuers perished in a mine collapse and subsequent rescue attempt, rescuers learned valuable lessons about the capabilities and limitations of robotic equipment. A robot crawler was sent 1,500 feet (457 meters) through a borehole into the mine, located about 120 miles (193 kilometers) south of Salt Lake City, after it crumbled due to a cave-in so powerful that it registered a magnitude of 3.9 on the Richter scale. Workers, handicapped by time constraints and the continued shifting of the mountain's mass, managed to get the crawler to the mine's floor but were bogged down by debris and unable retrieve the device, which remains trapped 52 feet (16 meters) below the mountain's surface.

Other robots helped us learn about ourselves. In November, University of California, San Diego, researchers reported in Proceedings of the National Academy of Sciences USA that "current robot technology is surprisingly close to achieving autonomous bonding and socialization with human toddlers for significant periods of time." QRIO, another two-foot- (61-centimeter-) humanoid was placed in UC San Diego's Early Childhood Education Center and programmed to wave, dance, sit and stand, among other functions. Children aged 18 to 24 months quickly warmed to the machine and began to treat it more like a peer than an object.

Earlier this month, Toyota unveiled the latest in its line of "partner robots": the aptly named Violin-playing Robot, which can hold the string instrument in place with its left hand and move the bow with its right hand to produce music. The roughly 5-foot, 123 lb. (1.5-meter, 56 kg) humanoid joins walking and rolling robots the company introduced in 2004, which are capable of playing the trumpet. Toyota rival Honda also this month introduced advancements to its humanoid, ASIMO (first introduced in 2005) , that allow it to perform tasks such as carrying a tray and pushing a cart while simultaneously employing an eye camera to detect the speed and direction of humans and other ASIMOs to avoid collisions. The new ASIMO also knows when its battery levels are low and will automatically return to its base to recharge.

When not serving tea, robots aided scientists in understanding insect behavior. Researchers at the Free University of Brussels (U.L.B.) in Belgium, École Polytechnique Fédérale de Lausanne (E.P.F.L.) in Switzerland and the University of Rennes in France, along with other European educational institutions, reported in Science that they successfully introduced a few autonomous robots (boxy in design, but made to smell like the real deal) into cockroach communities. The robots were able to alter the collective decision-making process of the group and trigger new behavior patterns in the bugs. The findings show that it may be possible to use robots to study and control how groups of animals from insects to vertebrates interact.

And further proving there is no limit to what robotic technology can accomplish, a Web video recently surfaced featuring a mechanical device that can not only open a beer bottle but can follow that feat with a proper pour. (Note how the cup is held at an angle; many humans have yet to master this technique.)

This sampling merely scratches the surface of the past year's advances in robotics that whet the appetite for what's to come: Early next year, for instance, researchers at the University of Colorado at Boulder will benchmark robotic devices to precisely mix and measure medications used in treatments such as chemotherapy. The robotic Mars rovers Opportunity and Spirit are currently hunkering down in anticipation of the harsh Martian winter season but will soon resume their exploration of the Red Planet. And Scandanavian research firm Sintef is developing artificially intelligent equipment to help offshore oil and gas drilling platforms run more safely and efficiently.

In all, 2008 promises continued progress in the area of artificial intelligence, although it will still be a while before humankind reaches the point where it cannot live without the robots it has created.

Rights & Permissions
Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Back To School

Back to School Sale!

12 Digital Issues + 4 Years of Archive Access just $19.99

Order Now >

X

Email this Article



This function is currently unavailable

X