ADVERTISEMENT
latest stories:
This article is from the In-Depth Report Tornado Alley: Twister Devastates Oklahoma City Suburb
See Inside Scientific American Volume 306, Issue 5

New Technology Allows Better Extreme Weather Forecasts

New technology that increases the warning time for tornadoes and hurricanes could potentially save hundreds of lives every year



David Mayhew

In Brief

  • Stronger or more frequent weather extremes will likely occur under climate change, such as more intense downpours and stronger hurricane winds.
  • Improved weather prediction, there­fore, will be vital to giving communities more time to prepare for dangerous storms, saving lives and minimizing damage to infrastructure.
  • New radar technology will allow forecasters to better “see” extreme weather, as will potential improvements to satellite technology, as well as computer models that run on more powerful supercomputers.
  • Longer warning time is only effective when paired with better understanding of how to get people to respond to the warnings, all part of an effort to build a “weather-ready nation.”

More In This Article

After the deafening roar of a thunderstorm, an eerie silence descends. Then the blackened sky over Joplin, Mo., releases the tentacles of an enormous, screaming multiple-vortex tornado. Winds exceeding 200 miles per hour tear a devastating path three quarters of a mile wide for six miles through the town, destroying schools, a hospital, businesses and homes and claiming roughly 160 lives.

Nearly 20 minutes before the twister struck on the Sunday evening of May 22, 2011, government forecasters had issued a warning. A tornado watch had been in effect for hours and a severe weather outlook for days. The warnings had come sooner than they typically do, but apparently not soon enough. Although emergency officials were on high alert, many local residents were not.

The Joplin tornado was only one of many twister tragedies in the spring of 2011. A month earlier a record-breaking swarm of tornadoes devastated parts of the South, killing more than 300 people. April was the busiest month ever recorded, with about 750 tornadoes.

At 550 fatalities, 2011 was the fourth-deadliest tornado year in U.S. history. The stormy year was also costly. Fourteen extreme weather and climate events in 2011—from the Joplin tornado to hurricane flooding and blizzards—each caused more than $1 billion in damages. The intensity continued early in 2012; on March 2, twisters killed more than 40 people across 11 Midwestern and Southern states.

Tools for forecasting extreme weather have advanced in recent decades, but researchers and engineers at the National Oceanic and Atmospheric Administration are working to enhance radars, satellites and supercomputers to further lengthen warning times for tornadoes and thunderstorms and to better determine hurricane intensity and forecast floods. If the efforts succeed, a decade from now residents will get an hour’s warning about a severe tornado, for example, giving them plenty of time to absorb the news, gather family and take shelter.

The Power of Radar
Meteorologist doug forsyth is heading up efforts to improve radar, which plays a role in forecasting most weather. Forsyth, who is chief of the Radar Research and Development division at NOAA’s National Severe Storms Laboratory in Norman, Okla., is most concerned about improving warning times for tornadoes because deadly twisters form quickly and radar is the forecaster’s primary tool for sensing a nascent tornado.

Radar works by sending out radio waves that reflect off particles in the atmosphere, such as raindrops or ice or even insects and dust. By measuring the strength of the waves that return to the radar and how long the round-trip takes, forecasters can see the location and intensity of precipitation. The Doppler radar currently used by the National Weather Service also measures the frequency change in returning waves, which provides the direction and speed at which the precipitation is moving. This key information allows forecasters to see rotation occurring inside thunderstorms before tornadoes form.

In 1973 NOAA meteorologists Rodger Brown, Les Lemon and Don Burgess discovered this information’s predictive power as they analyzed data from a tornado that struck Union City, Okla. They noted very strong outbound velocities right next to very strong inbound velocities in the radar data. The visual appearance of those data was so extraordinary that the researchers initially did not know what it meant. After matching the data to the location of the tornado, however, they named the data “Tornadic Vortex Signature.” The TVS is now the most important and widely recognized metric indicating a high probability of either an ongoing tornado or the potential for one in the very near future. These data enabled longer lead times for tornado warnings, increasing from a national average of 3.5 minutes in 1987 to 14 minutes today.

Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Holiday Sale

Limited Time Only!

Get 50% off Digital Gifts

Hurry sale ends 12/31 >

X

Email this Article

X