ADVERTISEMENT
This article is from the In-Depth Report Tornado Alley: Twister Devastates Oklahoma City Suburb
See Inside Scientific American Volume 306, Issue 5

New Technology Allows Better Extreme Weather Forecasts

New technology that increases the warning time for tornadoes and hurricanes could potentially save hundreds of lives every year

Eyes in the Sky
Of course, even the best radars cannot see over mountains or out into the oceans, where hurricanes form. Forecasters rely on satellites for these situations and also rely on them to provide broader data that supplement the localized information from a given radar. NOAA’s weather satellites supply more than 90 percent of the data that go into daily and long-range forecasts, and they are critical in providing alerts of severe weather potential multiple days in advance. To improve the delivery of this essential environmental intelligence, NOAA will deploy a range of new technologies in the next five years.

Without more detailed satellite observations, extending the range of accurate weather forecasts—especially for such extreme events as hurricanes—would be severely restricted. Monitoring weather requires two types of satellites: geostationary and polar-orbiting. Geostationary satellites, which stay fixed in one spot at an altitude of about 22,000 miles, transmit near-continuous views of the earth’s surface. Using loops of pictures taken at 15-minute intervals, forecasters can monitor rapidly growing storms or detect changes in hurricanes (but not tornadoes).

Polar satellites, which orbit the earth from pole to pole at an altitude of approximately 515 miles, give closer, more detailed observations of the temperature and humidity of different layers of the atmosphere. A worldwide set of these low Earth orbit (LEO) satellites covers the entire globe every 12 hours.

NOAA plans to launch a new series of LEO satellites this decade, as part of the Joint Polar Satellite System, with updated hardware, fitted with more sophisticated instruments. Their data will be used in computer models to improve weather forecasts, including hurricane tracks and intensities, severe thunderstorms and floods. The suite of advanced microwave and infrared sensors will relay much improved three-dimensional information on the atmosphere’s temperature, pressure and moisture, because rapid changes in temperature and moisture, combined with low pressure, signify a strong storm. Infrared sensors provide these measurements in cloud-free areas, and microwave sensors can “see through clouds” to the earth’s surface.

In April 2011, five days before a powerful storm system tore through six southern states, NOAA’s current polar-orbiting satellites provided data that, when fed into models, prompted the NOAA Storm Prediction Center to forecast “a potentially historic tornado outbreak.” The center elevated the risk to the highest level at midnight before the event. This level of outlook is reserved for the most extreme cases, with the least uncertainty, and is only used when the possibility for extremely explosive storms is detected. The new LEO satellites should allow such predictions as much as five to seven days before a storm.

Geostationary satellites will improve, too. Advanced instruments that will image the earth every five minutes in both visible and infrared wavelengths will be onboard the GOES-R series of satellites to be launched in 2015. They will increase observations from every 15 minutes to every five minutes or less, allowing scientists to monitor the rapid intensification of severe storms. The GOES-R satellites will also provide the world’s first space view of where lightning is occurring in the Western Hemi­sphere. The lightning mapper will help forecasters detect jumps in the frequency of in-cloud and cloud-to-ground lightning flashes. Research suggests that these jumps occur up to 20 minutes or more before hail, severe winds and even tornadoes.

Billions of Data
Each of the new radar technologies and satellites could improve warning times by several minutes, but incorporating the data derived from all these systems into forecasting computer models could provide even more time. Warnings for tornadoes, for example, could be issued up to an hour in advance. That is the kind of lead time that would have made a big difference in Joplin.

Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Back To School

Back to School Sale!

12 Digital Issues + 4 Years of Archive Access just $19.99

Order Now >

X

Email this Article

X