ADVERTISEMENT
See Inside A Matter of Time

A Chronicle of Timekeeping [Preview]

Our conception of time depends on the way we measure it

Reckoning Dates
ACCORDING TO ARCHAEOLOGICAL EVIDENCE, the Babylonians, Egyptians and other early civilizations began to measure time at least 5,000 years ago, introducing calendars to organize and coordinate communal activities and public events, to schedule the shipment of goods and, in particular, to regulate cycles of planting and harvesting. They based their calendars on three natural cycles: the solar day, marked by the successive periods of light and darkness as the earth rotates on its axis; the lunar month, following the phases of the moon as it orbits the earth; and the solar year, defined by the changing seasons that accompany our planet's revolution around the sun.

Before the invention of artificial light, the moon had greater social impact. And, for those living near the equator in particular, its waxing and waning was more conspicuous than the passing of the seasons. Hence, the calendars developed at the lower latitudes were influenced more by the lunar cycle than by the solar year. In more northern climes, however, where seasonal agriculture was important, the solar year became more crucial. As the Roman Empire expanded northward, it organized its calendar for the most part around the solar year. Today's Gregorian calendar derives from the Babylonian, Egyptian, Jewish and Roman calendars.

The Egyptians formulated a civil calendar having 12 months of 30 days, with five days added to approximate the solar year. Each period of 10 days was marked by the appearance of special star groups (constellations) called decans. At the rise of the star Sirius just before sunrise, which occurred around the all-important annual flooding of the Nile, 12 decans could be seen spanning the heavens. The cosmic significance the Egyptians placed in the 12 decans led them to develop a system in which each interval of darkness (and later, each interval of daylight) was divided into a dozen equal parts. These periods became known as temporal hours because their duration varied according to the changing length of days and nights with the passing of the seasons. Summer hours were long, winter ones short; only at the spring and autumn equinoxes were the hours of daylight and darkness equal. Temporal hours, which were adopted by the Greeks and then the Romans (who spread them throughout Europe), remained in use for more than 2,500 years.

Ingenious inventors devised sundials, which indicate time by the length or direction of the sun's shadow, to track temporal hours during the day. The sundial's nocturnal counterpart, the water clock, was designed to measure temporal hours at night. One of the first water clocks was a basin with a small hole near the bottom through which the water dripped out. The falling water level denoted the passing hour as it dipped below hour lines inscribed on the inner surface. Although these devices performed satisfactorily around the Mediterranean, they could not always be depended on in the cloudy and often freezing weather of northern Europe.

Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Back To School

Back to School Sale!

12 Digital Issues + 4 Years of Archive Access just $19.99

Order Now >

X

Email this Article



This function is currently unavailable

X