See Inside A Matter of Time

A Chronicle of Timekeeping [Preview]

Our conception of time depends on the way we measure it

Innovative Clockworks
IN THE 16TH CENTURY Danish astronomer Tycho Brahe and his contemporaries tried to use clocks for scientific purposes, yet even the best ones were still too unreliable. Astronomers in particular needed a better tool for timing the transit of stars and thereby creating more accurate maps of the heavens. The pendulum proved to be the key to boosting the accuracy and dependability of timekeepers. Galileo, the Italian physicist and astronomer, and others before him experimented with pendulums, but a 27-year-old Dutch astronomer and mathematician named Christiaan Huygens devised the first pendulum clock on Christmas Day in 1656. Huygens recognized the commercial as well as the scientific significance of his invention immediately, and within six months a local maker in the Hague had been granted a license to manufacture pendulum clocks.

Huygens saw that a pendulum traversing a circular arc completed small oscillations faster than large ones. Therefore, any variation in the extent of the pendulum's swing would cause the clock to gain or lose time. Realizing that maintaining a constant amplitude (amount of travel) from swing to swing was impossible, Huygens devised a pendulum suspension that caused the bob to move in a cycloid-shaped arc rather than a circular one. In theory, this enabled it to oscillate in the same time regardless of its amplitude [see top right illustration in box on page 52]. Pendulum clocks were about 100 times as accurate as their predecessors, reducing a typical gain or loss of 15 minutes a day to about a minute a week. News of the invention spread rapidly, and by 1660 English and French artisans were developing their own versions of this new timekeeper.

The advent of the pendulum not only heightened demand for clocks but also resulted in their development as furniture. National styles soon began to emerge: English makers designed the case to fit around the clock movement; in contrast, the French placed greater emphasis on the shape and decoration of the case. Huygens, however, had little interest in these fashions, devoting much of his time to improving the device both for astronomical use and for solving the problem of finding longitude at sea.

In 1675 Huygens devised another fundamental improvement, the spiral balance spring. Just as gravity controls the swinging oscillation of a pendulum in clocks, this spring regulates the rotary oscillation of a balance wheel in portable timepieces. A balance wheel is a finely balanced disk that rotates fully one way and then the other, repeating the cycle over and over [see bottom left illustration in box on page 52]. The spiral balance spring revolutionized the accuracy of watches, enabling them to keep time to within a minute a day. This advance sparked an almost immediate rise in the market for watches, which were now no longer typically worn on a chain around the neck but were carried in a pocket. It also increased the demand for portable sundials by which watches could be set to time.

At about the same time, Huygens heard of an important English invention. The anchor escapement, unlike the verge escapement he had been using in his pendulum clocks, allowed the pendulum to swing in such a small arc that maintaining a cycloidal pathway became unnecessary. Moreover, this escapement made practical the use of a long, seconds-beating pendulum and thus led to the development of a new case design. The longcase clock, commonly known since 1876 as the grandfather clock (after a song by American Henry Clay Work), began to emerge as one of the most popular English styles. Longcase clocks with anchor escapements and long pendulums can keep time to within a few seconds a week. The celebrated English clockmaker Thomas Tompion—and, subsequently, his successor, George Graham—later modified the anchor escapement to operate without recoil. This enhanced design, called the deadbeat escapement, became the most widespread type used in precision timekeeping for the next 150 years.

Share this Article:


You must sign in or register as a member to submit a comment.
Scientific American Back To School

Back to School Sale!

12 Digital Issues + 4 Years of Archive Access just $19.99

Order Now >


Email this Article