dcsimg
ADVERTISEMENT
See Inside January 2007

A Robot in Every Home

The leader of the PC revolution predicts that the next hot field will be robotics

More In This Article

Imagine being present at the birth of a new industry. It is an industry based on groundbreaking new technologies, wherein a handful of well-established corporations sell highly specialized devices for business use and a fast-growing number of start-up companies produce innovative toys, gadgets for hobbyists and other interesting niche products. But it is also a highly fragmented industry with few common standards or platforms. Projects are complex, progress is slow, and practical applications are relatively rare. In fact, for all the excitement and promise, no one can say with any certainty when--or even if--this industry will achieve critical mass. If it does, though, it may well change the world.

Of course, the paragraph above could be a description of the computer industry during the mid-1970s, around the time that Paul Allen and I launched Microsoft. Back then, big, expensive mainframe computers ran the back-office operations for major companies, governmental departments and other institutions. Researchers at leading universities and industrial laboratories were creating the basic building blocks that would make the information age possible. Intel had just introduced the 8080 microprocessor, and Atari was selling the popular electronic game Pong. At homegrown computer clubs, enthusiasts struggled to figure out exactly what this new technology was good for.

But what I really have in mind is something much more contemporary: the emergence of the robotics industry, which is developing in much the same way that the computer business did 30 years ago. Think of the manufacturing robots currently used on automobile assembly lines as the equivalent of yesterday's mainframes. The industry's niche products include robotic arms that perform surgery, surveillance robots deployed in Iraq and Afghanistan that dispose of roadside bombs, and domestic robots that vacuum the floor. Electronics companies have made robotic toys that can imitate people or dogs or dinosaurs, and hobbyists are anxious to get their hands on the latest version of the Lego robotics system.

Meanwhile some of the world's best minds are trying to solve the toughest problems of robotics, such as visual recognition, navigation and machine learning. And they are succeeding. At the 2004 Defense Advanced Research Projects Agency (DARPA) Grand Challenge, a competition to produce the first robotic vehicle capable of navigating autonomously over a rugged 142-mile course through the Mojave Desert, the top competitor managed to travel just 7.4 miles before breaking down. In 2005, though, five vehicles covered the complete distance, and the race's winner did it at an average speed of 19.1 miles an hour. (In another intriguing parallel between the robotics and computer industries, DARPA also funded the work that led to the creation of Arpanet, the precursor to the Internet.)

What is more, the challenges facing the robotics industry are similar to those we tackled in computing three decades ago. Robotics companies have no standard operating software that could allow popular application programs to run in a variety of devices. The standardization of robotic processors and other hardware is limited, and very little of the programming code used in one machine can be applied to another. Whenever somebody wants to build a new robot, they usually have to start from square one.

Despite these difficulties, when I talk to people involved in robotics--from university researchers to entrepreneurs, hobbyists and high school students--the level of excitement and expectation reminds me so much of that time when Paul Allen and I looked at the convergence of new technologies and dreamed of the day when a computer would be on every desk and in every home. And as I look at the trends that are now starting to converge, I can envision a future in which robotic devices will become a nearly ubiquitous part of our day-to-day lives. I believe that technologies such as distributed computing, voice and visual recognition, and wireless broadband connectivity will open the door to a new generation of autonomous devices that enable computers to perform tasks in the physical world on our behalf. We may be on the verge of a new era, when the PC will get up off the desktop and allow us to see, hear, touch and manipulate objects in places where we are not physically present.

[break]

This is only a preview.
Get the rest of this article now!

Select an option below:

Customer Sign In

*You must have purchased this issue or have a qualifying subscription to access this content


It has been identified that the institution you are trying to access this article from has institutional site license access to Scientific American on nature.com.
Click here to access this article in its entirety through site license access.

Rights & Permissions
Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
ADVERTISEMENT