ADVERTISEMENT
See Inside October 2009

How Quantum Effects Could Create Black Stars, Not Holes

Quantum effects may prevent true black holes from forming and give rise instead to dense entities called black stars



European Space Agency, NASA and Felix Mirabel French Atomic Energy Commission, Institute for Astronomy and Space Physics/Conicet of Argentina

Black holes have been a part of popular culture for decades now, most recently playing a central role in the plot of this year’s Star Trek movie. No wonder. These dark remnants of collapsed stars seem almost designed to play on some of our primal fears: a black hole harbors unfathomable mystery behind the curtain that is its “event horizon,” admits of no escape for anyone or anything that falls within, and irretrievably destroys all it ingests.

To theoretical physicists, black holes are a class of solutions of the Einstein field equations, which are at the heart of his theory of general relativity. The theory describes how all matter and energy distort spacetime as if it were made of elastic and how the resulting curvature of spacetime controls the motion of the matter and energy, producing the force we know as gravity. These equations unambiguously predict that there can be regions of spacetime from which no signal can reach distant observers. These regions—black holes—consist of a location where matter densities approach infinity (a “singularity”) surrounded by an empty zone of extreme gravitation from which nothing, not even light, can escape. A conceptual boundary, the event horizon, separates the zone of intense gravitation from the rest of spacetime. In the simplest case, the event horizon is a sphere—just six kilometers in diameter for a black hole of the sun’s mass.

This is only a preview. Get the rest of this article now!

Select an option below:

Customer Sign In

*You must have purchased this issue or have a qualifying subscription to access this content


It has been identified that the institution you are trying to access this article from has institutional site license access to Scientific American on nature.com.
Click here to access this article in its entirety through site license access.

Rights & Permissions
Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American MIND iPad

Give a Gift & Get a Gift - Free!

Give a 1 year subscription as low as $14.99

Subscribe Now >>

X

Email this Article

X