Bringing DNA Computers to Life

Tapping the computing power of biological molecules gives rise to tiny machines that can speak directly to living cells
or subscribe to access the full article.

When British mathematician Alan Turing conceived the notion of a universal programmable computing machine, the word "computer" typically referred not to an object but to a human being. It was 1936, and people with the job of computer, in modern terms, crunched numbers. Turing's design for a machine that could do such work instead--one capable of computing any computable problem--set the stage for theoretical study of computation and remains a foundation for all of computer science. But he never specified what materials should be used to build it.

Turing's purely conceptual machine had no electrical wires, transistors or logic gates. Indeed, he continued to imagine it as a person, one with an infinitely long piece of paper, a pencil and a simple instruction book. His tireless computer would read a symbol, change the symbol, then move on to the next symbol, according to its programmed rules, and would keep doing so until no further rules applied. Thus, the electronic computing machines made of metal and vacuum tubes that emerged in the 1940s and later evolved silicon parts may be the only "species" of nonhuman computer most people have ever encountered, but theirs is not the only possible form a computer can take.

or subscribe to access the full article.
Buy Digital Issue $7.99
Print + Digital
All Access
$99.99 Subscribe
Rights & Permissions
Share this Article:


You must sign in or register as a member to submit a comment.

Starting Thanksgiving

Enter code: HOLIDAY 2015
at checkout

Get 20% off now! >


Email this Article