ADVERTISEMENT
This article is from the In-Depth Report Zombie Science
See Inside May / June 2011

Protozoa Could Be Controlling Your Brain

Some protozoa infect the brain of their host, shaping its behavior in ways most suited to the pathogen, even if it leads to the suicide of the host

THE ANCIENT DEBATE surrounding the existence of free will appears unresolvable, a metaphysical question that generates much heat yet little light. Common sense and volumes of psychological and neuroscientific research reveal, however, that we are less free than we think we are. Our genes, our upbringing and our environment influence our behaviors in ways that often escape conscious control. Understanding this influence, the advertisement industry spent approximately half a trillion dollars worldwide in 2010 to shape the buying decisions of consumers. And extreme dictatorships, such as that in North Korea, remain in power through the effective use of insidious and all-pervasive forms of propaganda. Yet nothing approaches the perfidy of the one-celled organism Toxoplasma gondii, one of the most widespread of all parasitic protozoa. It takes over the brain of its host and makes it do things, even actions that will cause it to die, in the service of this nasty hitchhiker. It sounds like a cheesy Hollywood horror flick, except that it is for real.

We know that illness in general can slow us down, incapacitate us and, in the worst case, kill us. Yet this organism is much more specific. Natural selection has given rise to pathogens that infiltrate the nervous system and change that system’s wiring to achieve its ultimate purpose, replication—like a computer virus that reprograms an infected machine.

Such is the case with T. gondii. It sexually reproduces only in the intestines of cats yet can maintain itself indefinitely in any warm-blooded animal. Infected cats shed millions of their oocysts in their feces. Taken up by all kinds of animals, including dogs, rodents and humans, they infect muscle and the brain to escape attacks by the host’s immune system. Hidden away, they remain dormant as cysts, surrounding themselves with a tough cell wall. Yet this quiet stage of infection, called toxoplasmosis, is deceptive. Violating all rules of good hospitality, these invaders make the host’s brain do things counterproductive to its own survival.

Toxoplasmosis has been most thoroughly studied in rats and mice. Both species have a deep-seated, innate fear of cats for obvious reasons. Spray a bit of cat urine into a corner, and the rodent will avoid this location, well, like the plague. In contrast, an infected animal loses its innate fear of cats. By some measures, it even appears to be mildly attracted to the smell of felines. This is an unfortunate turn of events for the rodent, because it is now more likely to be successfully hunted by a cat. On the other hand, this is a great deal for T. gondii. When the cat devours the sick critter and its contaminated brain, T. gondii moves into its final host, where it reproduces, completing its life cycle. Not quite what the romantics have in mind when they write about “the circle of life”!

The behavioral manipulation induced by T. gondii is quite specific. The infected rodent doesn’t look sick; its weight is normal; it moves about nor­mally, possibly a bit more fran­tically than other mice; it grooms itself; and it interacts routinely with its conspe­cifics. Think how different this case is from what happens in rabies, another nasty infection. The animal loses its instinctual shyness, aggressively attacking others (the proverbial mad dog), thereby spreading the rabies virus through its bite. But because T. gondii can reproduce only in felines, it wants its host to be eaten by cats, not by just any carnivore. And because cats hunt live prey and do not eat carrion, T. gondii must not immediately kill its temporary host.

Rodents Aren’t Superheroes
How does T. gondii effect its insidious changes in the host? Experiments by Joanne P. Webster of Imperial College London, Robert Sapolsky of Stanford University and others have shown that infected rats or mice do not turn into the murine equivalent of Siegfried, the hero of Wagner’s Ring who knew no fear. No, they still avoid open spaces, remain nocturnal creatures, retain their aversion to the urine of other predators and learn to fear a tone associated with a foot shock. Might the protozoa have stunted their smell? After all, if they cannot smell anything anymore, they would not know how to avoid places smelling of cat urine. But infected mice still avoid food if it smells different—an aversion that arose partly because for centuries humans have been trying to control rodents by poison. The infected mice also respond appropriately to the smell of their littermates.

Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Special Universe

Get the latest Special Collector's edition

Secrets of the Universe: Past, Present, Future

Order Now >

X

Email this Article

X