This item probably did not make the front page of your local news­paper, but researchers at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University recently produced the heaviest silicon isotope ever observed. After slamming a beam of calcium ions into a tungsten target, scientists analyzed the reaction products and identified three silicon 44 ions, each with 14 protons and 30 neutrons. (Ordinary silicon has 14 neutrons.) Given that the hefty nuclei survived for only a tiny fraction of a second before decaying, the achievement may not sound earthshaking, but this kind of nuclear research is vitally important. Studying the properties of rare isotopes can help astrophysicists explain how the reactions in exploding stars generated the elements that make up Earth and all the other planets. Isotopes with the appropriate chemical and radiological characteristics could be incorporated into new cancer treatments. And a better understanding of exotic nuclei could even explain why the universe is rich in matter but almost devoid of antimatter.