Gamma Rays

To create one typically means you have to destroy something, be it a single particle or an entire star
or subscribe to access the full article.

Gamma rays are like cheetahs: they are the charismatic megafauna of the particle world. They are light of the maximum possible potency, usually defined as a wavelength shorter than 10–11 meter—a realm where light’s wave nature is hard to observe and its particulate nature stands out. Each gamma photon has an energy of more than 100 kilo-electron-volts (keV), 100,000 times more than a photon of visible light. The mightiest gamma ever recorded packed a punch of 100 tera-electron-volts (TeV), far outgunning anything particle physicists can blast out with their most powerful instrument, the Large Hadron Collider.

Creating such extreme particles takes commensurately extreme processes: the collision of particles moving at nearly the speed of light; the annihilation of matter and antimatter, which converts their mass entirely into energy, per Einstein’s famous equation E = mc2 the leakage of energy out of black holes; and the release of nuclear energy in radioactive decay or fusion reactions. (Technically, all photons emitted by atomic nuclei are classified as gamma rays, even the rare ones of less than 100 keV.) As extreme as these processes may be, we bask in their glow every day: sunlight started off as gamma radiation in the sun’s core and degraded into visible light during its tortuous passage through the overlying layers of gas.

or subscribe to access the full article.
Buy Digital Issue $7.99
Print + Digital
All Access
$99.99 Subscribe
Rights & Permissions
Share this Article:


You must sign in or register as a member to submit a comment.

Starting Thanksgiving

Enter code: HOLIDAY 2015
at checkout

Get 20% off now! >


Email this Article