ADVERTISEMENT
See Inside Becoming Human

How We Came To Be Human [Preview]

The acquisition of language and the capacity for symbolic art may lie at the very heart of the extraordinary cognitive abilities that set us apart from the rest of creation

So much for the spread of language from its center of origin. Exactly how this fateful novelty may have been invented is a separate question, upon which it is beyond my expertise to speculate. But with the substrate for language in place, the possibilities are numerous. My favorite among them is that an initial form of language may have been invented not by adults but by children. Given the fact that the brain is not a static structure like a rubber ball but is rather a dynamic entity that reorganizes itself during development (and indeed, given the right stimuli, throughout life), it is not implausible that a rudimentary precursor of language as it is familiar today initially arose in a group of children, in the context of play. Such prelanguage might have involved words--sounds--strung together with additive meaning. It is hard to imagine that once this invention had been made, society as a whole would not have eventually adopted it. On a Japanese island, macaque monkeys living along the beach were fed by researchers with sweet potatoes. These delicacies became covered with beach grit, and pretty soon, young macaques started washing them in the sea to remove the sand. It took a while for the adults to catch on: first the females, and only last the dominant males. Doubtless, some of the older and most dominant males never deigned to indulge in this behavior, preferring a familiar life of grit. But a good idea is a good idea--and it is difficult to believe that, in the case of language, once the notion of associating words with objects and ideas had developed, it would not have spread quite rapidly throughout society.

Still, the transition from a nonlinguistic lifestyle to a linguistic one as we are familiar with it involved a huge cognitive and practical leap. It seems probable that the addition of syntax may have been a separate, and later, event, though perhaps one made inevitable by the arrival of word-object associations. A single-stage progression from inarticulacy to articulate language as we know it seems more than a little implausible, and a multiple-stage process would certainly better mirror the way in which infants acquire language, with the vocabulary beginning to develop (very rapidly) first, and syntax and (later) sentence structuring following after the age of about two years. The history of the emergence of language is undoubtedly complex--indeed, this emergence only seems even possible from our perspective because we know it must have occurred. Subsequent to its origin, of course, language quite obviously changed, complexified and diversified hugely, as it became ever more widely adopted among human populations. But its common structure everywhere today, independent of culture, is surely due to the fact that the underlying basis was already there in everyone, long before language itself came along.

But there still remains one other factor to be explained. To speak, you need a brain that will tell your vocal tract what to do, but you also need a vocal tract that will respond appropriately to the brains instructions. And the primitive primate vocal tract cannot respond in this way. In fact, adult human beings are the only creatures, apes included (though some birds can mimic speech), that can physically make the sounds that are essential to articulate speech. And this ability comes at a price. The principal structures that make up the vocal tract are the larynx, the structure in the neck that houses the vocal cords; the pharynx, a tube that rises above it and opens into the oral and nasal cavities; and the tongue and its associated apparatus. Basic sounds are generated at the vocal cords, and then there is further modulation of those sounds in the pharynx and allied airways above. Among typical mammals, including the apes--and newborn humans--the larynx is positioned high in the neck, and the pharynx is consequently short, limiting what can be done to modulate vocal sounds. In adult humans, in contrast, the larynx lies low in the neck, lengthening the pharynx and increasing the potential for sound modulation. The price Ive mentioned is that while the human arrangement makes a vast array of sounds possible, it also prevents simultaneous breathing and swallowing--thereby introducing the unpleasant possibility of choking to death.

Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Back To School

Back to School Sale!

12 Digital Issues + 4 Years of Archive Access just $19.99

Order Now >

X

Email this Article



This function is currently unavailable

X