30 under 30: Trapping Cold Atoms with a Laser Lattice to Create Artificial Crystal Structures

Meet Claire Thomas, 24, one of the up-and-coming physicists attending this year's Lindau Nobel Laureate Meeting

Image courtesy of Claire Thomas

The annual Lindau Nobel Laureate Meeting brings a wealth of scientific minds to the shores of Germany’s Lake Constance. Every summer at Lindau, dozens of Nobel Prize winners exchange ideas with hundreds of young researchers from around the world. Whereas the Nobelists are the marquee names, the younger contingent is an accomplished group in its own right. In advance of this year’s meeting, which focuses on physics, we are profiling several promising attendees under the age of 30. The profile below is the 29th in a series of 30.

Name: Claire Thomas
Age: 24
Born: Louisiana, USA
Nationality: American

Current position: PhD student at the University of California, Berkeley
Education: Bachelor’s degree from Boston University

What is your field of research?
My research is on ultracold atomic gases in an optical kagome lattice. Optical lattices are created by overlapping multiple laser beams so that their intensities form an interference pattern. We then trap cold atoms at specific locations in this interference pattern, thus experimentally realizing a well characterized, controllable and defect-free artificial crystal structure.

What drew you to physics, and to that research area in particular?
In my field I am able to do my own calculations, come up with new ideas and pursue them on a time scale that is reasonable and fun. My research group is very flexible and we determine our tasks and goals daily. This is not a feature available in many large scale experiments.  I was first attracted to large scale experiments because of the beauty of the science that they seek to explore. I have, however, very much enjoyed my work on smaller scale experiments, where I believe that I can still study fundamental physics.

Where do you see yourself in 10 years?
In ten years I expect to be thirty-four. I will be a scientist, but it is almost impossible to say where science will be at that time so I cannot imagine my options and certainly not my choice. I hope to be up to date on whatever technology is in active use, to know how it works but to still go backpacking without it. I hope to teach my nieces and nephews how radios used to work when there were only a few circuit elements and they were all visible to the naked eye.  I hope that by then one of them will ask why the sky is blue and take interest in the answer.

Who are your scientific heroes?
Lise Meitner, Nikola Tesla, Michael Faraday and James Clerk Maxwell

What activities outside of physics do you most enjoy?
I enjoy rock climbing, backpacking and cycling in the Berkeley hills.

What do you hope to gain from this year’s Lindau meeting?
The Lindau conference offers a unique opportunity to expand my understanding of the physical world, as well as the experimental and theoretical tools that we use to explore it.  I look forward to discussing with physicists from all disciplines and traditions to expand my concept of the ways in which physics can be done.

Are there any Nobelists whom you are particularly excited to meet?

Ivar Giaever and Brian Josephson. William Phillips, whose prize was for slowing atoms with a Zeeman slower, a tool in my lab that makes my research possible. I’d like to hear his current thoughts on the field of cold atoms and Bose Einstein condensates. Paul Crutzen: on his experience in the interplay between science and politics, and how to not be discouraged by the slow moving process of bureaucracy. Dan Shecthman: discovered quasicrystals, and when he did so people did not believe him. That sounds like an experience I would benefit from hearing about.

« Previous
28. Jonathan Welch
30 Under 30:
Lindau Nobel Laureate Meeting
Next »
30. Arnold Mathijssen


Rights & Permissions
Share this Article:


You must sign in or register as a member to submit a comment.
Scientific American MIND iPad

Give a Gift & Get a Gift - Free!

Give a 1 year subscription as low as $14.99

Subscribe Now >>


Email this Article