ADVERTISEMENT
See Inside October 2007

Liquid Zoom

Adaptive lenses change magnification without moving

Camera bugs love zoom lenses, but they tend to be too bulky for cell phones and many miniature digital cameras. A research team at the University of Central Florida (U.C.F.) led by optics professors Shin-Tson Wu and Hongwen Ren has developed zoom lenses that can be dramatically smaller than conventional zooms. Whereas traditional zoom lenses move sets of lens elements mechanically to adjust focal length (and therefore magnification), the group’s adaptive lenses alter focal length nearly instantaneously without changing the position of the lenses.

The U.C.F. team has two ways to make adaptive lenses. The first class, Wu explains, is based on the ability of a liquid-crystal layer to alter the degree to which it can refract (or bend) light when subjected to an electric field. In one version of this approach, the researchers adjust the layer’s refractive index by varying the strength of the electric field in a concentric and graduated fashion. A change in the low voltage applied to a clear electrode modifies the focal length of the lens. Makers of cell phone lenses like to have a zoom magnification ratio of at least three and low voltages to save battery power, he says.

This is only a preview. Get the rest of this article now!

Select an option below:

Customer Sign In

*You must have purchased this issue or have a qualifying subscription to access this content


It has been identified that the institution you are trying to access this article from has institutional site license access to Scientific American on nature.com.
Click here to access this article in its entirety through site license access.

Rights & Permissions
Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Holiday Sale

Give a Gift &
Get a Gift - Free!

Give a 1 year subscription as low as $14.99

Subscribe Now! >

X

Email this Article

X