ADVERTISEMENT
See Inside June 2011

Living in a Quantum World

Quantum mechanics is not just about teeny particles. It applies to things of all sizes: birds, plants, maybe even people

More In This Article

According to standard physics textbooks, quantum mechanics is the theory of the microscopic world. It describes particles, atoms and molecules but gives way to ordinary classical physics on the macroscopic scales of pears, people and planets. Somewhere between molecules and pears lies a boundary where the strangeness of quantum behavior ends and the familiarity of classical physics begins. The impression that quantum mechanics is limited to the microworld permeates the public understanding of science. For instance, Columbia University physicist Brian Greene writes on the first page of his hugely successful (and otherwise excellent) book The Elegant Universe that quantum mechanics “provides a theoretical framework for understanding the universe on the smallest of scales.” Classical physics, which comprises any theory that is not quantum, including Albert Einstein’s theories of relativity, handles the largest of scales.

Yet this convenient partitioning of the world is a myth. Few modern physicists think that classical physics has equal status with quantum mechanics; it is but a useful approximation of a world that is quantum at all scales. Although quantum effects may be harder to see in the macroworld, the reason has nothing to do with size per se but with the way that quantum systems interact with one another. Until the past decade, experimentalists had not confirmed that quantum behavior persists on a macroscopic scale. Today, however, they routinely do. These effects are more pervasive than anyone ever suspected. They may operate in the cells of our body.

This is only a preview. Get the rest of this article now!

Select an option below:

Customer Sign In

*You must have purchased this issue or have a qualifying subscription to access this content


It has been identified that the institution you are trying to access this article from has institutional site license access to Scientific American on nature.com.
Click here to access this article in its entirety through site license access.

Rights & Permissions
Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Holiday Sale

Black Friday/Cyber Monday Blow-Out Sale

Enter code:
HOLIDAY 2014
at checkout

Get 20% off now! >

X

Email this Article

X