ADVERTISEMENT
See Inside Becoming Human

Planet of the Apes [Preview]

During the Miocene epoch, as many as 100 species of apes roamed throughout the Old World. New fossils suggest that the ones that gave rise to living great apes and humans evolved not in Africa but Eurasia

It is therefore probable that Africa was formerly inhabited by extinct apes closely allied to the gorilla and chimpanzee; as these two species are now man's closest allies, it is somewhat more probable that our early progenitors lived on the African continent than elsewhere.

So mused Charles Darwin in his 1871 work, The Descent of Man. Although no African fossil apes or humans were known at the time, remains recovered since then have largely confirmed his sage prediction about human origins. There is, however, considerably more complexity to the story than even Darwin could have imagined. Current fossil and genetic analyses indicate that the last common ancestor of humans and our closest living relative, the chimpanzee, surely arose in Africa, around six million to eight million years ago. But from where did this creature's own forebears come? Paleoanthropologists have long presumed that they, too, had African roots. Mounting fossil evidence suggests that this received wisdom is flawed.

Today's apes are few in number and in kind. But between 22 million and 5.5 million years ago, a time known as the Miocene epoch, apes ruled the primate world. Up to 100 ape species ranged throughout the Old World, from France to China in Eurasia and from Kenya to Namibia in Africa. Out of this dazzling diversity, the comparatively limited number of apes and humans arose. Yet fossils of great apes--the large-bodied group represented today by chimpanzees, gorillas and orangutans (gibbons and siamangs make up the so-called lesser apes)--have turned up only in western and central Europe, Greece, Turkey, South Asia and China. It is thus becoming clear that, by Darwin's logic, Eurasia is more likely than Africa to have been the birthplace of the family that encompasses great apes and humans, the hominids. (The term hominid has traditionally been reserved for humans and protohumans, but scientists are increasingly placing our great ape kin in the definition as well and using another word, hominin, to refer to the human subset. The word hominoid encompasses all apes--including gibbons and siamangs--and humans.)

Perhaps it should not come as a surprise that the apes that gave rise to hominids may have evolved in Eurasia instead of Africa: the combined effects of migration, climate change, tectonic activity and ecological shifts on a scale unsurpassed since the Miocene made this region a hotbed of hominoid evolutionary experimentation. The result was a panoply of apes, two lineages of which would eventually find themselves well positioned to colonize Southeast Asia and Africa and ultimately to spawn modern great apes and humans.

Paleoanthropology has come a long way since Georges Cuvier, the French natural historian and founder of vertebrate paleontology, wrote in 1812 that l'homme fossile n'existe pas (fossil man does not exist). He included all fossil primates in his declaration. Although that statement seems unreasonable today, evidence that primates lived alongside animals then known to be extinct--mastodons, giant ground sloths and primitive ungulates, or hoofed mammals, for example--was quite poor. Ironically, Cuvier himself described what scholars would later identify as the first fossil primate ever named, Adapis parisiensis Cuvier 1822, a lemur from the chalk mines of Paris that he mistook for an ungulate. It was not until 1837, shortly after Cuvier's death, that his disciple douard Lartet described the first fossil higher primate recognized as such. Now known as Pliopithecus, this jaw from southeastern France, and other specimens like it, finally convinced scholars that such creatures had once inhabited the primeval forests of Europe. Nearly 20 years later Lartet unveiled the first fossil great ape, Dryopithecus, from the French Pyrnes.

In the remaining years of the 19th century and well into the 20th, paleontologists recovered many more fragments of ape jaws and teeth, along with a few limb bones, in Spain, France, Germany, Austria, Slovakia, Hungary, Georgia and Turkey. By the 1920s, however, attention had shifted from Europe to South Asia (India and Pakistan) and Africa (mainly Kenya), as a result of spectacular finds in those regions, and the apes of western Eurasia were all but forgotten. But fossil discoveries of the past two decades have rekindled intense interest in Eurasian fossil apes, in large part because paleontologists have at last recovered specimens complete enough to address what these animals looked like and how they are related to living apes and humans.

Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Special Universe

Get the latest Special Collector's edition

Secrets of the Universe: Past, Present, Future

Order Now >

X

Email this Article

X