ADVERTISEMENT
See Inside September 2009

Quantum Entanglement, Photosynthesis and Better Solar Cells

Quantum details of plants' food-making ability could improve photovoltaic technology



Martin Ruegner Getty Images

As nature’s own solar cells, plants convert sunlight into energy via photosynthesis. New details are emerging about how the process is able to exploit the strange behavior of quantum systems, which could lead to entirely novel approaches to capturing usable light from the sun.

All photosynthetic organisms use protein-based “antennas” in their cells to capture incoming light, convert it to energy and direct that energy to reaction centers—critical trigger molecules that release electrons and get the chemical conversion rolling. These antennas must strike a difficult balance: they must be broad enough to absorb as much sunlight as possible yet not grow so large that they impair their own ability to shuttle the energy on to the reaction centers.

This is only a preview. Get the rest of this article now!

Select an option below:

Customer Sign In

*You must have purchased this issue or have a qualifying subscription to access this content


It has been identified that the institution you are trying to access this article from has institutional site license access to Scientific American on nature.com.
Click here to access this article in its entirety through site license access.

Rights & Permissions
Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Holiday Sale

Black Friday/Cyber Monday Blow-Out Sale

Enter code:
HOLIDAY 2014
at checkout

Get 20% off now! >

X

Email this Article

X