ADVERTISEMENT
See Inside January / February 2010

Reviving Consciousness in Injured Brains

Direct stimulation of the arousal centers in patients may restore awareness

MOST SCHOLARS concerned with the material basis of consciousness are cortical chauvinists. They focus on the two cortical hemispheres that crown the brain. It is here that perception, action, memory, thought and consciousness are said to have their seat.

There is no question that the great specificity of any one conscious perceptual experience—such as the throbbing pain of the socket following extraction of the lower right wisdom tooth, the feeling of familiarity in déjà vu, the aha experience of sudden understanding, the azure blue of a high mountain vista, the ­despair at reading about one more suicide bombing—is mediated by coalitions of synchronized cortical nerve cells and their ­associated targets in the satellites of the cortex, thalamus, amygdala, claustrum and basal ganglia. Groups of cortical neurons are the elements that construct the content of each particular rich and vivid experience. Yet content can be provided only if the basic infrastructure to represent and process this content is intact. And it is here that the less glamorous regions of the brain, down in the catacombs, come in.

When Consciousness Leaves
It is a general observation in neurology that injury to large chunks of cortical tissue, particularly of the so-called silent frontal lobes, can lead to a loss of specific conscious content but without any massive impairment in the victim’s behavior. The patient might be unable to see in color or perhaps cannot recognize familiar faces but otherwise copes fine in daily life. But destruction of tissue the size of a sugar cube in the brain stem and in parts of the thalamus, especially if they occur simultaneously on the left and right sides, may leave the patient comatose, stuporous or otherwise unable to function. A car accident, a drug or alcohol overdose, a drive-by shooting, a near drowning, a stroke—all these events can cause consciousness to flee permanently.

A case in point was Terri Schiavo. On life support for 15 years until her court-ordered death, she was in a permanent vegetative state (VS), with a flat EEG (electroencephalograph) reading, indicative that her cortex had stopped working. Such individuals show no overt behavioral responses that rise above the level of brain stem–mediated reflexes. Two-way signaling, say, a nod in response to the question “Are you in pain?” is not possible. Less severe brain damage leads to a minimally conscious state (MCS). Although patients are still disabled, confined to bed and on a feeding tube, some sort of communication, albeit erratic and often inconsistent, occurs. Patients may be able to gesture or follow with their eyes. Awareness of their own condition and their environment is impaired and intermittent.

VS and MCS are not rare. In the U.S., up to a quarter of a million people in hospices and nursing homes hover for years in this limbo, a steep medical and emotional burden for many. This scourge is the paradoxical outcome of progress in critical care tech­no­logy—mechani­cal ventilators, medevac helicopters, emergency room nurses and physicians, and the modern phar­maceutical cornucopia. With these tools, victims can be plucked back from the edge of death. This fate is a blessing for most, but it may be a curse for some.

Given the large number of affected individuals, you might think there is a large-scale, federally coordinated research effort under way, fostering techniques to rehabilitate the damaged brain. But you would be mistaken. For a variety of reasons, society at large has neglected this population.

Sparking a Return
Now a few hardy pioneers are finding innovative ways to help. Their technology of choice is deep-brain stimulation (DBS). The method has been much in the public eye as a way to ameliorate the symptoms of Parkinson’s disease. Electrodes are implanted into a region just below the thalamus, the quail-egg-shaped structure in the center of the brain. When the electric current is turned on, the rigor and tremors of this movement disorder disappear instantly.

Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American MIND iPad

Give a Gift & Get a Gift - Free!

Give a 1 year subscription as low as $9.99

Subscribe Now >>

X

Email this Article

X