In the blink of an eye, a wave of visible light completes a quadrillion (1015) oscillations, or cycles. That very large number presents both opportunities and a challenge. The opportunities promise numerous applications both inside and outside of laboratories. They go to the heart of our ability to measure frequencies and times with extremely high precision, a skill that scientists rely on for some of the best tests of laws of nature—and one that GPS systems, for instance, depend on. The challenge has centered on the impossibility of manipulating light with the techniques that work so well for electromagnetic waves of much lower frequencies, such as microwaves.