Sequencing Sea World

A genetic census of the ocean's primary predators

LARRY MADIN Woods Hole Oceanographic Institution

When biologists from the University of Connecticut wanted to take their laboratory's $85,000 DNA sequencer out to the Sargasso Sea in the Atlantic, the manufacturer, Applied Biosystems, balked. The warranty did not cover oceanographic expeditions. Even J. Craig Venter, famous for his role in decoding the human genome, had frozen his microbial samples from the Sargasso Sea for sequencing back on shore. His results showed that the surface water in the balmy sea around Bermuda teems with genetic material. The biologists from Connecticut wanted to go deeper into the ocean--and go beyond microbes--to test for diversity among the animals at the base of the food web. Working with a sequencer at sea would give them the best results.

The researchers are part of the Census of Marine Life, an international network of marine scientists that began a mission in 2000 to identify every living creature in the ocean by 2010. To this end, Peter Wiebe of the Woods Hole Oceanographic Institution designed a filter system of fine-mesh nets on a deepwater trawl. Onboard the National Oceanic and Atmospheric Administration's Ronald H. Brown, Wiebe, the chief scientist, and his team used the net device to scour the Sargasso Sea. Lashed down with a bungee cord in an air-conditioned room sat a brand-new, 140-kilogram DNA sequencer. Theirs was the first expedition to identify marine animals from 5,000 meters deep and sequence their gene markers, or "bar codes," while on the ship.

or subscribe to access the full article.
Rights & Permissions
Share this Article:


You must sign in or register as a member to submit a comment.

Starting Thanksgiving

Enter code: HOLIDAY 2015
at checkout

Get 20% off now! >


Email this Article