ADVERTISEMENT
Bring Science Home

Sporty Science: The Mechanics of a Carnival Game

A Mardi Gras physics problem from Science Buddies

bsh carnival game physics


A fun lesson in physics: Get physics on your side for deceptively tricky carnival games! 
George Retseck

Key concepts
Mass
Center of mass
Balance
Physics
Games

Introduction
Have you ever played a game at a carnival, trying to win a stuffed animal or other prize? It might look easy—until you try it. Why are those "simple" games at the fairs, carnivals and Mardi Gras festivals so hard? Is it really lack of skill or coordination or do those midway vendors use some basic laws of science to help them set up the games in their favor? In this science activity you'll investigate how physics can help you win—or lose—at the classic game of trying to knock over a pyramid of milk bottles using a ball.

Background
Why can it be nearly impossible to knock down pins or hit the right target to win that giant stuffed animal at the carnival or fair—especially when it looks so easy? To answer this, in this activity we'll look at the classic carnival game sometimes called "One Ball," in which milk bottles are stacked in a pyramid and you get one throw with a ball to try to knock them all over. To beat this game it's useful to think about how redistributing an object's mass can affect how well it balances. For example, it might be easy to stand on a balance beam while holding a heavy backpack hanging down in front of you, but it's much more challenging when that backpack is on your back.

How an object's mass is distributed can affect its center of mass, which is the average location of most of an object's mass. This basically means that the center of mass will be in the object's center if the mass is evenly distributed on top and bottom (as it usually is with a ball). And it will shift to the object's heavier side if the mass isn't uniformly distributed. So, for a pyramid, the center of mass will be much lower than it's physical center because so much more of the mass is located in the lower half.

Materials

  • A very large room or an outside area (You will need plenty of space so you can throw a ball without hitting anyone or anything.)
  • A small, stable table
  • Masking tape, a stick, a rock or a similar object to mark off a throwing distance
  • Tennis ball or baseball
  • Three plastic bottles filled with water, all the same shape and size (Make sure that you can stably stack the bottles in a pyramid shape. Most 16.9–fluid ounce drinking-water bottles should work well for this.)
  • Food coloring (optional)

Preparation

  • Fill each of the bottles with water. The same amount of water should be in each bottle.
  • If you want, you can remove the labels from your bottles and add some food coloring (three drops) to each bottle to give your carnival game some color. If you add food coloring to the bottles, make sure you do your testing where it will not be a problem if a bottle spills some dyed water! (If you use dyed water, it's recommended you do this activity outdoors.)
  • Take your materials to the very large room or area outside where you can set up your mini carnival game.
  • Put the small table at a set distance from your "throw line." You might try about eight feet away from the table. Mark the throw line using a piece of masking tape, a rock, a stick or a similar object.
     

Procedure

  • Make sure the water bottle lids are on tight. Stack the three bottles into a stable pyramid shape on the table, with two bottles on the bottom and one on top that is centered between them and resting on their lids. How stable is your pyramid?
  • From your throw line, throw the tennis ball (or baseball) at the bottle pyramid. Did you hit any bottles? If so, which bottle was hit? How many bottles were knocked over?
  • Arrange the pyramid as it was before on the table.
  • Repeat this process until you have hit the pyramid at least 10 times with the ball. Try to throw the ball the same way each time, and try to hit each bottle a few times. How many bottles usually get knocked over? Does it seem to depend on which bottle you hit with the ball? If so, which bottle(s) do you need to hit to knock over the most bottles?
  • Now take the top bottle from the pyramid and empty the water out of it. Stack the bottles into a stable pyramid shape on the table with the empty bottle on the top. How stable does this pyramid seem?
  • As you did before, throw the ball from the throw line at the pyramid at least 10 times, rearranging the pyramid on the table after each throw. Again try to throw the ball the same way each time, and try to hit each bottle a few times. How many bottles usually get knocked over now? Does hitting a certain bottle (or bottles) tend to knock over the most bottles?
  • Take one of the bottom bottles from the pyramid and empty the water out of it. Stack the bottles into a stable pyramid shape on the table with the two empty bottles on the bottom and the water-filled bottle on the top. How stable does this pyramid seem?
  • As you did before, throw the ball from the throw line at the pyramid at least 10 times, rearranging the pyramid on the table after each throw. Again try to throw the ball the same way each time, and try to hit each bottle a few times. How many bottles usually get knocked over with this pyramid arrangement? Does hitting a certain bottle (or bottles) tend to knock over the most bottles?
  • Overall, which pyramid arrangement led to the highest number of throws where all three bottles were knocked over? In other words, which arrangement was most successful? Which was least successful? Which bottle(s) should be hit to cause the largest number of bottles to fall down?
  • Extra: You could repeat this activity but this time you could quantify your results. That is, when testing each pyramid arrangement, write down which bottle is hit each time and how many bottles are knocked over. If you quantify your results, just how much more "successful" is one pyramid arrangement compared with another? How much better is it to hit one bottle compared with another?
  • Extra: Try moving the throw line closer to the pyramid or farther away from it. How does your throwing distance from the pyramid change how successful you are at knocking it over?
  • Extra: Instead of bottles you could use wooden blocks and arrange them in different configurations, such as stacking all three on top of one another. Using wooden blocks, which configuration is easiest to knock over? Which is hardest?
Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Dinosaurs

Get Total Access to our Digital Anthology

1,200 Articles

Order Now - Just $39! >

X

Email this Article

X