Supersymmetry and the Crisis in Physics

For decades physicists have been working on a beautiful theory that has promised to lead to a deeper understanding of the quantum world. Now they stand at a crossroads: prove it right in the next year or confront an epochal paradigm shift
or subscribe to access the full article.

More on this Topic

At dawn on a summer morning in 2012, we were on our third round of espresso when the video link connected our office at the California Institute of Technology to the CERN laboratory near Geneva. On the monitor we saw our colleagues on the Razor team, one of many groups of physicists analyzing data from the CMS experiment at CERN's Large Hadron Collider (LHC). Razor was created to search for exotic collisions that would provide the first evidence of supersymmetry, a 45-year-old theory of matter that would supplant the standard understanding of particle physics, solving deep problems in physics and explaining the nature of the universe's mysterious dark matter. After decades of searching, no experimental evidence for supersymmetry has been found.

At CERN, Maurizio Pierini, the Razor team's leader, flashed a plot of new data, and from nine time zones away we could see the raised eyebrows around the room: there was an anomaly. “Somebody should look at this event,” Pierini said matter-of-factly. By “event” he meant a particular proton-proton collision, one of trillions produced at the LHC. Within minutes the two of us had pulled up the full record for this collision on a laptop.

or subscribe to access the full article.
Buy Digital Issue $5.99
Digital Issue + Subscription $39.99 Subscribe
Rights & Permissions
Share this Article:


You must sign in or register as a member to submit a comment.

Starting Thanksgiving

Enter code: HOLIDAY 2015
at checkout

Get 20% off now! >


Email this Article