The Forgotten Code Cracker

In the 1960s Marshall W. Nirenberg deciphered the genetic code, the combination of the A, T, G and C nucleotides that specify amino acids. So why do people think that Francis Crick did it?

In the summer of 2006 Marshall W. Nirenberg chanced on a just published biography of a prominent molecular biologist. It was entitled Francis Crick: Discoverer of the Genetic Code.

“That’s awful!” he thought. “It’s wrong—it’s really and truly wrong!”

Nirenberg himself, along with two other scientists, had received the Nobel Prize in Physiology or Medicine in 1968 “for their interpretation of the genetic code and its function in protein synthesis,” and neither of his co-winners happened to be named Crick. (They were in fact Robert W. Holley and Har Gobind Khorana.)

The incident was testimony to the inconstancy of fame. And it was by no means an isolated example, as Nirenberg knew from the long and bitter experience of seeing similar misattributions elsewhere. The breaking of the genetic code was one of the most important advances in molecular biology, secondary only to the discovery of the double-helical structure of DNA in 1953 by Crick and James D. Watson. But whereas they are household names, Marshall Nirenberg certainly is not.

Nirenberg, 80, is now a laboratory chief at the National Institutes of Health, where he has spent his entire career. His otherwise standard-issue science office is distinguished by framed copies of his lab notebooks tabulating the results of his genetic code work. Many of the original documents and some of the instruments he used in this research are on display on the first floor of the NIH Clinical Center, in the exhibit “Breaking the Genetic Code.”

“People had hypothesized that there was a genetic code in the 1950s,” Nirenberg says. “But nobody knew how proteins were synthesized. Nobody knew how it was done.”

When Nirenberg arrived at the NIH in 1957 as a biochemistry postdoc, cracking the genetic code was not the first item on his agenda. Ambitious as he was, deciphering the language of life seemed too daunting a project—at least initially.

Consider the problem. The information inside a DNA molecule is encoded by the nucleotide bases adenine, thymine, guanine and cytosine (A, T, G and C). The full sequence of those four nucleotides, which run in nearly endless combinations up and down the strands, constitutes a molecular message for building an organism. Each three-letter sequence of nucleotides (or codon) stands for a specific amino acid. GCA, for example, codes for alanine, one of the 20 different amino acids found in animal organisms. Cellular machinery strings together the amino acids to form the proteins that make up a living being. The task of deciphering the genetic code, then, was reduced to the problem of finding out which exact three-letter sequences stood for which precise amino acid.

In 1955 Crick himself tried to solve the problem, not by experimenting but essentially by thinking, just as a cryptanalyst might try to crack a coded message. He got nowhere and abandoned the attempt. (People today may attribute the discovery of the code to Crick because of his theoretical efforts and because in 1966, based on the experiments of others, he drew up one of the first charts of the complete code.)

Nirenberg started work on the code around 1960, but he had to confront a preliminary problem first. “My question was, Is DNA read directly to protein?” DNA, he knew, resided in the cell nucleus, whereas protein synthesis took place in the cytoplasm. Therefore, either DNA itself exited the nucleus, or some intermediate molecule did—what we now know as messenger RNA. “So the question I was asking was, Does messenger RNA exist? And I thought if I made a cell-free protein-synthesizing system from E. coli and added DNA to it, or RNA, then I would see if they stimulated protein synthesis.”

The so-called cell-free system is one of the stranger tools of experimental biology. Also known as cell sap, it is a mass of cells denuded of their membranes, the result being a quantity of free cytoplasm in which the original cellular organelles and other structures remain largely intact and functional. In late 1960 Nirenberg and Heinrich Matthaei, who had joined Nirenberg’s lab, found that putting RNA into the cell-free system caused it to synthesize proteins but that adding DNA did not.

Rights & Permissions
or subscribe to access other articles from the November 2007 publication.
Digital Issue $7.99
Digital Issue + All Access Subscription $99.99 Subscribe
Share this Article:


You must sign in or register as a member to submit a comment.
Scientific American Holiday Sale

Scientific American Mind Digital

Get 6 bi-monthly digital issues
+ 1yr of archive access for just $9.99

Hurry this offer ends soon! >


Email this Article