ADVERTISEMENT
See Inside January 2008

The Human Instrument

When judged by its size, our vocal system fails to impress as a musical instrument. How then can singers produce all those remarkable sounds?

More In This Article

The human vocal system would not receive much acclaim if instrument makers placed it in a lineup of traditional orchestral instruments. Arranged by size, for example, the voice box (larynx)—and the airway it sits in—would be grouped with the piccolo, among the smallest of mechanical music makers. And yet experienced singers compete well with all man-made instruments, one on one and even paired with full orchestras. Recent investigations of how our singing voice generates a remarkable range of sounds have revealed surprising complexity in the behavior of the vocal system’s elements and in the ways they interact.

For more than half a century, scientists explained the voice’s ability to create song by invoking a so-called linear theory of speech acoustics, whereby the source of sound and the resonator of sound (or amplifier) work independently. Researchers have now learned, however, that nonlinear interactions—those in which source and resonator feed off each other—play an unexpectedly crucial role in generating human sound. Such insights now make it possible to describe how great singers produce those amazing sounds.

This is only a preview. Get the rest of this article now!

Select an option below:

Customer Sign In

*You must have purchased this issue or have a qualifying subscription to access this content


It has been identified that the institution you are trying to access this article from has institutional site license access to Scientific American on nature.com.
Click here to access this article in its entirety through site license access.

Rights & Permissions
Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American MIND iPad

Give a Gift & Get a Gift - Free!

Give a 1 year subscription as low as $14.99

Subscribe Now >>

X

Email this Article

X