The Next Little Thing



As a step to molecular circuits, researchers would like to control the charge flowing across single organic molecules, thereby turning them into electrical junctions. But the relatively enormous electrodes abutting the molecules typically complicate such attempts. Leaving a single “dangling bond,” or unpaired electron, on a silicon electrode may be the key to precise charge control of adjacent molecules, reports a group from the University of Alberta in Canada. They deposited lines of ringed carbon molecules on a silicon surface in such a way that a dangling bond punctuated the end of each line. A scanning tunneling microscope played over the structures felt more charge in carbon molecules closer to dangling bonds, indicating that the bonds could serve to precisely alter a molecule's conductivity. See the June 2 Nature for details.

Rights & Permissions
or subscribe to access other articles from the August 2005 publication.
Digital Issue $7.99
Digital Issue + All Access Subscription $99.99 Subscribe
Share this Article:


You must sign in or register as a member to submit a comment.
Scientific American Holiday Sale

Scientific American Mind Digital

Get 6 bi-monthly digital issues
+ 1yr of archive access for just $9.99

Hurry this offer ends soon! >


Email this Article