ADVERTISEMENT
See Inside July 2008

Using Causality to Solve the Puzzle of Quantum Spacetime

A new approach to the decades-old problem of quantum gravity goes back to basics and shows how the building blocks of space and time pull themselves together

More In This Article

Editor's Note: Click here for the web animations mentioned in the article

How did space and time come about? How did they form the smooth four-dimensional emptiness that serves as a backdrop for our physical world? What do they look like at the very tiniest distances? Questions such as these lie at the outer boundary of modern science and are driving the search for a theory of quantum gravity—the long-sought unification of Einstein's general theory of relativity with quantum theory. Relativity theory describes how spacetime on large scales can take on countless different shapes, producing what we perceive as the force of gravity. In contrast, quantum theory describes the laws of physics at atomic and subatomic scales, ignoring gravitational effects altogether. A theory of quantum gravity aims to describe the nature of spacetime on the very smallest scales—the voids in between the smallest known elementary particles—by quantum laws and possibly explain it in terms of some fundamental constituents.

This is only a preview. Get the rest of this article now!

Select an option below:

Customer Sign In

*You must have purchased this issue or have a qualifying subscription to access this content


It has been identified that the institution you are trying to access this article from has institutional site license access to Scientific American on nature.com.
Click here to access this article in its entirety through site license access.

Rights & Permissions
Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Holiday Sale

Limited Time Only!

Get 50% off Digital Gifts

Hurry sale ends 12/31 >

X

Email this Article

X