Triple Helix: Designing a New Molecule of Life

Peptide nucleic acid, a synthetic hybrid of protein and DNA, could form the basis of a new class of drugs—and of artificial life unlike anything found in nature
or subscribe to access the full article.

Jean-Francois Podevin

For all the magnificent diversity of life on this planet, ranging from tiny bacteria to majestic blue whales, from sunshine-harv­­est­­ing plants to mineral-digesting endoliths miles underground, only one kind of “life as we know it” exists. All these organisms are based on nucleic acids—DNA and RNA—and proteins, working together more or less as described by the so-called central dogma of molecular biology: DNA stores information that is transcribed into RNA, which then serves as a template for producing a protein. The proteins, in turn, serve as important structural elements in tissues and, as enzymes, are the cell’s workhorses.

Yet scientists dream of synthesizing life that is utterly alien to this world—both to better understand the minimum components required for life (as part of the quest to uncover the essence of life and how life originated on earth) and, frankly, to see if they can do it. That is, they hope to put together a novel combination of molecules that can self-organize, metabolize (make use of an energy source), grow, reproduce and evolve.

or subscribe to access the full article.
Buy Digital Issue $7.99
Print + Digital
All Access
$99.99 Subscribe
Rights & Permissions
Share this Article:


You must sign in or register as a member to submit a comment.

Starting Thanksgiving

Enter code: HOLIDAY 2015
at checkout

Get 20% off now! >


Email this Article