Unlocking the Secrets of Longevity Genes [Preview]

A handful of genes that control the body's defenses during hard times can also dramatically improve health and prolong life in diverse organisms. Understanding how they work may reveal the keys to extending human life span while banishing diseases of old age

You can assume quite a bit about the state of a used car just from its mileage and model year. The wear and tear of heavy driving and the passage of time will have taken an inevitable toll. The same appears to be true of aging in people, but the analogy is flawed because of a crucial difference between inanimate machines and living creatures: deterioration is not inexorable in biological systems, which can respond to their environments and use their own energy to defend and repair themselves.

At one time, scientists believed aging to be not just deterioration but an active continuation of an organism's genetically programmed development. Once an individual achieved maturity, "aging genes" began to direct its progress toward the grave. This idea has been discredited, and conventional wisdom now holds that aging really is just wearing out over time because the body's normal maintenance and repair mechanisms simply wane. Evolutionary natural selection, the logic goes, has no reason to keep them working once an organism has passed its reproductive age.

Yet we and other researchers have found that a family of genes involved in an organism's ability to withstand a stressful environment, such as excessive heat or scarcity of food or water, have the power to keep its natural defense and repair activities going strong regardless of age. By optimizing the body's functioning for survival, these genes maximize the individual's chances of getting through the crisis. And if they remain activated long enough, they can also dramatically enhance the organism's health and extend its life span. In essence, they represent the opposite of aging genes--longevity genes.

We began investigating this idea nearly 15 years ago by imagining that evolution would have favored a universal regulatory system to coordinate this well-known response to environmental stress. If we could identify the gene or genes that serve as its master controllers and thereby act as master regulators of an organism's life span, these natural defense mechanisms might be turned into weapons against the diseases and decline that are now apparently synonymous with human aging.

Many recently discovered genes, known by such cryptic names as daf-2, pit-1, aak-1, clk-1 and p66Shc, have been found to affect stress resistance and life span in laboratory organisms, suggesting that they could be part of a fundamental mechanism for surviving adversity [see table on page 54]. But our own two laboratories have focused on a gene called SIR2, variants of which are present in all organisms studied so far, from yeast to humans. Extra copies of the gene increase longevity in creatures as diverse as yeast, roundworms and fruit flies, and we are working to determine whether it does the same for larger animals, such as mice.

As one of the first longevity genes to have been identified, SIR2 is the best characterized, so we will focus here on its workings. They illustrate how a genetically regulated survival mechanism can extend life and improve health, and growing evidence suggests that SIR2 may be the key regulator of that mechanism.

Silence Is Golden
WE FIRST DISCOVERED that SIR2 is a longevity gene by asking what causes individual baker's yeast cells to grow old and whether a single gene might control aging in this simple organism. The notion that an understanding of yeast life span would tell us anything about human aging was deemed preposterous by many. Aging in yeast is measured by counting how many times mother cells divide to produce daughters before dying. A typical yeast cell's life span is about 20 divisions.

One of us (Guarente) began by screening yeast colonies for unusually long-lived cells in the hope of finding genes responsible for their longevity. This screen yielded a single mutation in a gene called SIR4, which encodes part of a complex of proteins containing the Sir2 enzyme. The mutation in SIR4 caused the Sir2 protein to gather at the most highly repetitive region of the yeast genome, a stretch containing the genes that encode the protein factories of the cell, known as ribosomal DNA (rDNA). More than 100 of these rDNA repeats exist in the average yeast cell's genome, and they are difficult to maintain in a stable state. Repetitive sequences are prone to "recombining" with one another, a process that in humans can lead to numerous illnesses, such as cancer and Huntington's disease. Our yeast findings suggested that aging in mother cells was caused by some form of rDNA instability that was mitigated by the Sir proteins.

or subscribe to access other articles from the December 2006 publication.
Digital Issue $7.95
Digital Issue + All Access Subscription $99.99 Subscribe
Share this Article:


You must sign in or register as a member to submit a comment.
Scientific American Holiday Sale

Scientific American Mind Digital

Get 6 bi-monthly digital issues
+ 1yr of archive access for just $9.99

Hurry this offer ends soon! >


Email this Article