ADVERTISEMENT

Weighty Matters

The century-old artifact that defines the kilogram, the fundamental unit of mass, is to be replaced by a more accurate standard based on an invariant property of nature
THIS IS A PREVIEW.
or subscribe to access the full article.

In an age when technologies typically grow obsolete in a few years, it is ironic that almost all the world's measurements of mass (and related phenomena such as energy) depend on a 117-year-old object stored in the vaults of a small laboratory outside Paris, the International Bureau of Weights and Measures. According to the International System of Units (SI), often referred to as the metric system, the kilogram is equal to the mass of this "international prototype of the kilogram" (or IPK)--a precision-fabricated cylinder of platinum-iridium alloy that stands 39 millimeters high and is the same in diameter.

The SI is administered by the General Conference on Weights and Measures and the International Committee for Weights and Measures. During the past several decades the conference has redefined other base SI units (those set by convention and from which all other quantities are derived) to vastly improve their accuracy and thus keep them in step with the advancement of scientific and technological understanding. The standards for the meter and the second, for example, are now founded on natural phenomena. The meter is tied to the speed of light, whereas the second has been related to the frequency of microwaves emitted by a specific element during a certain transition between energy states.

THIS IS A PREVIEW.
or subscribe to access the full article.
Buy Digital Issue $7.99
Print + Digital
All Access
$99.99 Subscribe
Rights & Permissions
Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.

EVERY ISSUE
EVERY YEAR
1845-PRESENT

Get All-Access Digital + Print >

X

Email this Article

X