ADVERTISEMENT
See Inside May 2005

What Heated the Asteroids?

Collisions among asteroids in the early history of the solar system may help explain why many of these rocky bodies reached high temperatures

Big objects retain heat better than small objects do.

Most of Earth's internal heat is generated by four long-lived radioisotopes--potassium 40, thorium 232, uranium 235 and uranium 238--that release energy over billions of years as they decay into stable isotopes. Earth's large size (about 12,740 kilometers across) ensures that this heat is lost relatively slowly, which explains why our planet still has a molten outer core and volcanic eruptions at its surface. Smaller bodies, however, have a larger ratio of surface area to volume, allowing them to cool down faster by radiating their heat into space. Earth's moon, for example, is only about one fourth the size of Earth, so it loses heat much more quickly. As a result, major lunar eruptions of basalt, the most common volcanic rock, ceased nearly three billion years ago.

This is only a preview. Get the rest of this article now!

Select an option below:

Customer Sign In

*You must have purchased this issue or have a qualifying subscription to access this content


It has been identified that the institution you are trying to access this article from has institutional site license access to Scientific American on nature.com.
Click here to access this article in its entirety through site license access.

Rights & Permissions
Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
Scientific American Holiday Sale

Give a Gift &
Get a Gift - Free!

Give a 1 year subscription as low as $14.99

Subscribe Now! >

X

Email this Article

X