One of the biggest issues of our time is energy: where to get it, how to save it, and how it relates to our climate, food and water. Naturally, we cover this topic in our pages in multiple ways, and from many angles, in practically every edition. In our January issue, for instance, we ran an interview with clean technology investor Vinod Khosla, co-founder of Sun Microsystems and a member of our board of advisers [“In Search of the Radical Solution,” interview by Mark Fischetti]. Khosla made a bold statement: “If an innovative idea has a 90 percent probability of failing, then I like it. Why? Because it is likely to be the one that has a quantum jump in performance.” In contrast, he said, only pursuing “high-probability areas” yields results that are “all incremental.”

I’m not sure I would put it that way, but we agree that big ideas are part of a portfolio of technologies to address national and global energy needs. Thus, our cover story presents “7 Radical Energy Solutions.” None is probably the “ultimate” answer—in fact, they all share a high risk of failure. But they could be part of a rational combination of technologies and policies, balancing the requirements of energy security, environmental soundness and public health.

On a personal note, we are saddened to report that one of the stories in the cover feature is the last piece we will be able to run by writer JR Minkel, whom we lost too young earlier this year. JR was a writer of great intelligence, passion and curiosity. We will try to draw inspiration and solace from his memory as we consider the challenges of the future ahead. We will need them. 

Calling All Scientists
The National Academies last fall reported that the U.S. ranks 27 out of 29 wealthy countries in proportion of college students with degrees in science or engineering. It called on federal and state governments to improve teaching in math and science by targeting early childhood education and public school curricula and by supporting teacher training in crucial subjects. But many science teachers today, particularly in middle school and younger grades, do not have a science degree.

Enter 1,000 Scientists in 1,000 Days, which aims to help teachers and scientists to connect with one another. Scientific American is launching this program as part of its three-year (that’s the 1,000 days) Change the Equation initiatives with our parent company, Nature Publishing Group. The idea is simple. We seek scientists, mathematicians and engineers who are willing to volunteer to advise on curricula, answer a classroom’s questions or visit a school—for instance, to participate in a lab or to talk about what you do.

Scientists, mathematicians, engineers: We hope you will consider participating in this worthy program by volunteering using the form found at

Teachers: We plan to be ready with a geographic listing of experts near you by the beginning of the 2011–2012 academic year.

Also on our Web site in May will be free science-related activities for parents and kids, called Bring Science Home.

Next issue, I will tell you about another new program—this one for enthusiasts wishing to work directly with scientists on real research.