By Kathleen Raven of Nature Medicine

Families with autistic children must navigate a condition where questions outnumber the answers, and therapies remain sparse and largely ineffective. A clinical trial being conducted by the Sutter Neuroscience Institute in Sacramento, California to address this situation began recruiting participants today for a highly experimental stem cell therapy for autism. The institute plans to find 30 autistic children between ages 2 and 7 with cord blood banked at the privately-run Cord Blood Registry, located about 100 miles west of the institute. Already one other clinical trial, with 37 total participants between ages 3 and 12 years old, has been completed in China. The researchers affiliated with Beike Biotechnology in Shenzhen, the firm that sponsored the study, have not yet published any papers from that the trial, which used stem cells from donated cord blood. Mexican researchers are currently recruiting kids for yet another type of autism stem cell trial that will harvest cells from the participant’s fat tissue.

But for each of these officially registered trials, many more undocumented stem cell therapy treatments take place for clients who are willing to pay enough. “Our research is important because many people are going to foreign countries and spending a lot of money on therapy that may not be valid,” says Michael Chez, a pediatric neurologist and lead investigator of the study at Sutter.

A major difference between the Sutter trial and those in China is that his will use the child’s own stem cells, rather than those from a donor. Chez hypothesizes that one way autologous stem cell infusion might work is by reducing inflammation within the body’s immune system. This would answer previous research that suggests that autism may be an autoimmune disease. “One of our exploratory goals will be to look at inflammatory markers in cells,” he says.

The study’s primary goal, however, will be assessing changes in patients’ speaking and understanding of vocabulary. For each individual, researchers will create a baseline benchmark that establishes current skill levels. The group will be evenly divided, with one initially receiving an infusion of their own, unmodified cord blood stem cells and the other a placebo treatment of saline injection. Six months later, all of the children will be tested on their ability to comprehend and form words. The groups will then be switched. In the course of the 13-month-long study, both groups will receive only one stem cell therapy infusion.

Not all stem cell scientists who study neurodevelopmental diseases are ready to invest great hope that the autism stem cell trial will succeed. “I wish I could tell you I’m optimistic about the end results,” says James Carroll, a pediatric neurologist at the Georgia Health Sciences University in Augusta who began a clinical trial two years ago to better understand how stem cell therapy affects patients with cerebral palsy. “But so far we have not seen any kind of miraculous recovery in our cerebral palsy patients. I would be delighted if that changes.”

Members in the stem cell therapy patient community think Chez will have no shortage of volunteers for the trial. Jeremy Lowey, who lives in Sacramento and has struggled with a rare condition known as non-verbal learning disorder, arranged for his own stem cell therapy treatment in India last year, which he called life-changing. He receives numerous Facebook requests from parents of autistic children who are curious to know more. He always begins his conversations by saying, “Go slowly and think hard about your decision.”

This article is reproduced with permission from Nature Medicine. The article was first published on August 21, 2012.